
Quantum Simulators Catalog
Overview of important quantum simulators

Table of contents

OVERVIEW 2

Analog Quantum Simulators 2
Quantum Computer Emulator 2
Quantum Circuit Simulators 3
Quantum Network Simulators 3
QKD Simulators 3

CHAPTER A: SIMULATION WITH PLATFORMS 4

Amazon Braket 4
Azure Quantum (Q#/QKD) 5
Google Quantum AI (Cirq) 6
IBM Quantum (Qiskit) 7
QUANTASTICA (QPS /Qubit Toaster) 8

Quantum Programming Studio 8

Quantum Inspire 10
Quantum Network Explorer (NetSquid) 11
Rigetti QCS (pyQuil) 12

CHAPTER B: SELF-INSTALLATION SIMULATORS 13

Quantum Circuit Simulators 13
blueqat 13
Cirq 13
myQLM 14
Ocean 14
ProjectQ 15
pyQuil 15
Microsoft QKD (Q#) 16

QCircuits 16
Qiskit 17
Quantum Computing Playground 17
Quantum JavaScript (Q.js) 18
Qubit Toaster 19
Quest 19
Qibo 20
QuTip 20
Quirk 20
Silq 21
Strawberry Fields 22
XACC 22

Quantum Network Simulators 23
Interlin-q 23
NetSquid 23
OpenQL 24
QuISP 24
QuNetSim 25
SeQUeNCe 25
SimulaQron 26
SQUANCH 26

QKD Simulators 27
QKDNetSim 27
QKDSimulator 27

Quantum annealing 28
D-Wave Ocean 28

OTHER SIMULATORS 29

Overview

The term quantum simulator is ambiguous and is used for analog quantum simulators that

work on the basis of quantum phenomena, as well as for software for simulating quantum

computers or effects. Therefore, it is first necessary to present the correct technical terms and

their meaning.

Analog Quantum Simulators

Analog quantum simulators are systems to simulate the behavior of a quantum system and its

quantum effects by another, more controllable system.

Analog quantum simulators are used, among other things, to analyze the behavior of molecules,

which can lead to faster drug development. In materials research, the potential of quantum

simulators lies in the research of new catalysts, e.g. for the Haber-Bosch process for the

production of ammonia: With better catalysts, the energy costs for this process could be

significantly reduced.

Analog simulators have the advantage that they are subject to the same physical systems and

laws as the target system to be analyzed. Therefore, they work more effectively compared to

(digital) supercomputers and can solve problems faster.

A special feature are the so-called quantum annealers from the company D-Wave from Canada.

These exploit quantum mechanical effects to obtain solutions for optimization tasks that would

require too much time for a classical computer. The advantage of quantum annealers, in

contrast to analog quantum simulators, is the free adjustability. However, these cannot be used

universally, but are only suitable for optimization tasks.

An example of the development of an analogue quantum simulator is the goal of the PASQUanS

project within the framework of the EU Quantum Flagship project. As part of PASQUanS, an

analog quantum simulator with 1000 atoms or ions is to be created, which is to be universally

programmable.

Quantum Computer Emulator

Since there is still no quantum computer that can be universally programmed for any type of

problem and the use of such computers to solve practical tasks is only in its infancy, so-called

quantum computer emulators are used. These simulate the behavior of a quantum computer

and the associated QuBits on a classical computer and allow software solutions and algorithms

for (future) quantum computers to be tested and developed now. In the following, the terms

quantum simulator or simulation refer exclusively to quantum computer emulators; pure

analog simulators are not considered further in this document.

Quantum simulators are used, for example, to study the behavior and influence of quantum

technologies on areas such as communication networks, cyber security, and computing power.

Since the integration of applications and concepts based on quantum hardware into

conventional technologies is still in its infancy, quantum simulators already offer the possibility

of analyzing predictions and effects of this future technology.

There are now a large number of providers and software for quantum simulators. Above all, large

corporations (IBM, Google, Amazon, Microsoft), which themselves produce and further develop

existing quantum computers, offer quantum simulators with comprehensive libraries and

graphical tools – mostly free of charge. After prior free registration, for example, programs can

be run on an IBM quantum computer with the Qiskit simulator developed by IBM.

In general, there are some special features when working with QuBits (not simulated): These

include, for example, that quantum computers are susceptible to errors resulting from thermal

noise, loss of photons, etc. The consequence is that the states of QuBits are manipulated and

consequently errors occur in the calculations. Although there are also software packages for

simulating quantum errors, simulation software can only reproduce the real hardware system

to a limited extent due to external influences.

Depending on the area of application, quantum simulators can be divided into different

categories:

Quantum Circuit Simulators

These types of simulators are suitable for simulating fundamental properties of quantum

technologies such as single qubits, entanglement or quantum teleportation.

Quantum Network Simulators

These simulators are intended to simulate networks that are (should) be operated with

quantum hardware components in a simplified way and are also able to model partly the

transfer of quantum states up to the physical layer.

QKD Simulators

QKD (Quantum Key Distribution) simulators are used at the application layer to simulate key

generation, transmission and exchange. Since a QKD key is a random number, this simulation

method is also suitable as a random number generator.

Chapter A: Simulation with Platforms

This chapter describes online platforms that make it possible to create simulations online and,

if necessary, upload them from a private PC. In addition, many platform operators offer access

to real quantum hardware, e.g. quantum processors and "classical" simulators for several QuBits,

after registration. Depending on the provider, there are also costs for using this service.

Amazon Braket

Platform Amazon Braket

Properties • Amazon Braket is a platform from AWS (Amazon Web Services) that

enables working with various types of quantum computers and circuit

simulators

• Creating Quantum Projects in a Cloud

• Can be run on real quantum hardware

• Provides advice and support to users and businesses through the Quantum

Solutions Lab

• Enables the use of quantum computers or processors from D:Wave, IonQ,

Rigetti, OQC and soon also from QuEra

• AWS offers a Cloud Credit program for scientists

Applications • To develop and build quantum algorithms

• Testing algorithms with quantum simulators

• Linking to other AWS products

• AWS Braket Services are also used by companies to develop quantum

technologies or products for customers (see S. here)

Language • The Braket SDK (Software Development Kit) is a library written in Python

• Braket SDK is OpenSource

License • Amazon Braket SDK: Apache 2.0 License

Access • Installation and download of the Braket SDK is free of charge

• Use of simulators and quantum hardware usually subject to a fee

OS • Platform-independent: Python interpreter required

Repository • GitHub repository of the Amazon-Braket SDK

Documents • Examples of Braket

https://aws.amazon.com/de/braket/
https://aws.amazon.com/de/quantum-solutions-lab/
https://aws.amazon.com/de/quantum-solutions-lab/
https://aws.amazon.com/de/braket/quantum-computers/
https://aws.amazon.com/de/government-education/research-and-technical-computing/cloud-credit-for-research/
https://aws.amazon.com/de/braket/build-on-braket/
https://pypi.org/project/amazon-braket-sdk/
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-examples

Azure Quantum (Q#/QKD)

Platform Azure Quantum

Properties • Platform of the Microsoft cloud service Azure, which allows users to create

quantum software

• Provides access to computers based on ion traps from the manufacturers

IonQ and Honeywell

• Provides optimization algorithms for quantum annealing (without hardware)

Applications • Simulation of quantum circuits, optimization tasks, simulation of a complete

quantum computer with the Fullstack Simulator (QKD)

Language • Q#

• Python

License

Access • Azure account can be created for free here

• Access to quantum hardware or booking of computing resources for a fee

OS • Azure packages can be installed platform-independent

Repository • Libraries of Q#

Documentation • Q Tutorials and Documentation#

https://azure.microsoft.com/de-de/services/quantum/
https://azure.microsoft.com/de-de/free/
https://azure.microsoft.com/de-de/pricing/details/azure-quantum/
https://github.com/microsoft/QuantumLibraries
https://docs.microsoft.com/de-de/azure/quantum/

Google Quantum AI (Cirq)

Platform Google Quantum AI

Properties • Google Quantum AI (GQA) includes a collection of tools for developing

quantum algorithms

• Quantum algorithms for simulators and quantum hardware are written using

the Python library Cirq

• It is possible to test programs written in Cirq via the Quantum Computing

Service on real quantum hardware.

• GQA also contains numerous links to current research areas and

publications on the topic of quantum technology and educational offers

• In addition to Cirq, GQA also offers libraries for simulating fermionic

systems (OpenFermion) and another for hybrid (classical/quantum)

machine learning (TensorFlow Quantum)

Applications • Creation and simulation of quantum algorithms or quantum circuits

Language • Python

License • Cirq: Apache 2.0 License

Access • Download Cirq for free

• The Quantum Computing Service is not currently available to the public

• Other libraries such as OpenFermion and TensorFlow Quantum are also

available for free

OS • Cirq can be used platform-independently, as long as Python is supported

Repository • Cirq on GitHub

Documentation • Cirq Documentation and Tutorials

• Other software and packages from GQA: see here

https://quantumai.google/
https://github.com/quantumlib/cirq
https://quantumai.google/cirq/start
https://quantumai.google/software

IBM Quantum (Qiskit)

Platform IBM Quantum

Properties • IBM Quantum is an IBM platform for quantum technologies

• The Quantum Composer can be used to create and test quantum circuits

online

• The IBM Quantum Lab service allows users to create and test programs

created with Qiskit online (without installation) in Jupyter Notebook

• The website also contains an overview of quantum simulators and (hybrid)

hardware systems operated by IBM

• Also includes programs to support scholars and faculty in the field

• Provides access to real quantum hardware on which quantum circuits can

be tested, for example

Applications • Online Modeling and Simulation of Circuits

• Execution of the programs on real quantum hardware developed by IBM

• Simulation of (existing) quantum hardware

Language • Python Library

License • Apache 2.0 License

Access • Circuits can be tested on real hardware after registration

• No installation required for online use, but registration is required

• Registration is free

OS • Platform-independent: only a browser is required to access the platform

Repository • Overview of Qiskit Repositories

Documentation • Page of Qiskit

• IBM Quantum Project Documents

https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/services?services=systems
https://quantum-computing.ibm.com/programs/researchers
https://quantum-computing.ibm.com/programs/educators
https://www.ibm.com/account/reg/de-de/signup?formid=urx-19776&target=https%3A%2F%2Flogin.ibm.com%2Foidc%2Fendpoint%2Fdefault%2Fauthorize%3FqsId%3Dabdc39ed-74ef-4e75-aaa6-d062215448dc%26client_id%3DN2UwMWNkYmMtZjc3YS00
https://github.com/orgs/Qiskit/repositories
https://qiskit.org/

QUANTASTICA (QPS /Qubit Toaster)

Platform QUANTASTICA

Properties • Organization that develops and deploys various software tools and

solutions in the field of quantum computing

• Since May 2019, QUANTASTICA has been a partner of Rigetti in the field

of application development

• Good networking with other partners: Unitary Zero Space, icebreaker and

Unitary Fund

• Simulators developed by QUANTASTICA include the Qubit Toaster and

quantum circuit

• The Quantum Programming Studio can be used to carry out graphic

simulations online and create quantum algorithms

• The QConverter - as an online or commandline version - is a tool that can

be used to convert quantum programming languages for specific quantum

computers into others, e.g. QASM according to PyQuil

• Quantum Algorithm Generator: This tool is used to create quantum circuits

based on state vectors (reverse engineering). Installation instructions can

be found here.

Applications • Depending on the software package used, different tasks such as code

conversion, creation of simulations or algorithms or quantum circuits can

be derived from state vectors

Language • Quantum Circuit Simulator, QConvert: Javascript

• Quantum Algorithm Generator: Python

• Qubit toaster: n/a

License • Quantum Algorithm Generator: Apache 2.0 License

• QConverter, Quantum Circuit: MIT License

• Qubit toaster: n/a

Access • No restrictions except Quantum Algorithm: Login to Quantum Programming

Studio required

OS • Platform-independent: Python interpreter or browser (Javascript) required

Repository QConverter: GitHub

Quantum Algorithm Generator, Qubit Toaster: not available

Quantum Circuit: GitHub

Documentation Qubit toaster: s. here

Quantum Circuit: s. here

Quantum Algorithm Generator: see here

QConverter: s. here

Quantum Programming Studio

Simulator Quantum Programming Studio

https://quantastica.com/
https://unitaryzerospace.com/
https://icebreaker.vc/
https://unitary.fund/
https://www.npmjs.com/package/quantum-circuit
https://quantastica.com/#converters
https://quantum-circuit.com/qconvert
https://www.npmjs.com/package/q-convert
https://quantastica.com/#generator
https://pypi.org/project/quantastica-qps-api/
https://github.com/quantastica/qconvert-js
https://github.com/quantastica/quantum-circuit
https://quantastica.com/toaster/
https://quantum-circuit.com/docs/quantum_circuit
https://quantum-circuit.com/docs/rest_api
https://quantum-circuit.com/docs/
https://quantum-circuit.com/

Properties • The Quantum Programming Studio (QPS) is a web-based graphical

development environment for quantum algorithms and simulations

• Circuits can be easily created via drag and drop

• QPS is a partner application from Rigetti

• Quantum circuits can be exported as a format for different languages or

frameworks and run on different simulators and quantum computers such

as TensorFlow Quantum or Amazon Braket

• QPS is a package extension of the opensource Quantum Circuit Simulator

Applications • Running simulations, creating algorithms for different platforms

Language • Quantum Circuit Simulator: JavaScript

License • MIT License

Access • A free registration is required to use the web interface

OS • OS independent: All you need is a browser with Javascript

Respository • Available on GitHub

Documentation • Documentation on different topics of QPS

https://quantum-circuit.com/
https://quantum-circuit.com/docs/quantum_circuit
https://github.com/quantastica/quantum-circuit
https://quantum-circuit.com/docs/quantum_circuit

Quantum Inspire

Platform Quantum Inspire

Properties • Quantum Inspire (QI) is a multi-hardware quantum technology platform

developed by QuTech

• Other partners of the project are listed here

• Provides the ability to test your own quantum algorithms on simulators or

real-world quantum hardware

• Algorithms must be written in the cQASM language, which can also be

displayed graphically (e.g. in the form of quantum circuits).

• QX is a quantum computer emulator on which up to 34 QuBits can be

simulated, depending on the account status (emulator backends)

• Two quantum processors are available as hardware backends: the Spin-2

with 2 qubits and the Starmon-5 with five qubits

Applications • Testing of (quantum) algorithms on real quantum hardware or quantum

computer emulators

Language • cQASM

License • User guidelines and terms of use can be found here.

Access • There are three types of user accounts:

• Anonymous: no registration required, use of the cQASM Online Editor and

simulation of up to five QuBits on simulator backend possible. No saving of

projects possible

• Basic Account: Registration required. Project storage possible. Access to

quantum hardware or processors and use of different emulator backends

possible

• Advanced/Special Account: for special requests such as registering a

group of people or expanding the previous account, e.g. for access to more

QuBits. This can be requested via the account management in the user

account

OS • Platform-independent: browser required

Repository • no repository available

Documentation • API reference, quick start guide, cQASM manual and code examples are

available here

https://www.quantum-inspire.com/
https://qutech.nl/
https://qutech.nl/
https://www.quantum-inspire.com/partners/
https://www.quantum-inspire.com/kbase/emulator-backends/
https://www.quantum-inspire.com/kbase/emulator-backends/
https://www.quantum-inspire.com/kbase/hardware-backends/
https://www.quantum-inspire.com/backends/spin-2/
https://www.quantum-inspire.com/backends/starmon-5/
https://www.quantum-inspire.com/kbase/cqasm/
https://www.quantum-inspire.com/terms-and-conditions
https://www.quantum-inspire.com/kbase/accounts/
https://www.quantum-inspire.com/projects/new/
https://www.quantum-inspire.com/account/create
https://www.quantum-inspire.com/kbase/introduction-to-quantum-computing/
https://www.quantum-inspire.com/kbase/introduction-to-quantum-computing/

Quantum Network Explorer (NetSquid)

Simulator Quantum Network Explorer

Properties • Enables interactive testing of applications in quantum networks such as

QKD or distributed CNOT operations

• Developed by employees of the Dutch research project QuTech on

quantum technology

• Also includes documentation on various topics related to quantum networks

such as QKD, security, quantum cloud etc...

• For the development of your own applications for the Quantum Network

Explorer, the QNE-ADK software can be downloaded

Applications • Suitable for getting a quick overview of the topic of quantum networks and

to carry out your own small experiments, e.g. QKD transmission from

Amsterdam to Rotterdam

Language Written in Python - CLI Interface

License MIT License

Access • Login required if attempts with the QNE are to be saved online

• Registration for the NetSquid simulator is required if QNE is to be installed

locally. The reason for this is that QNE uses libraries of this simulator

OS • Browser required for online access

• MacOS or Linux with Python 3.7 and pip version 19

Respository • QNE-ADK in GitHub

Documentation • Information on quantum networks, quantum technology and user guides on

QNE and QNE-ADK can be found here

https://www.quantum-network.com/
https://qutech.nl/
https://www.quantum-network.com/adk/
https://www.quantum-network.com/account/create
https://github.com/QuTech-Delft/qne-adk
https://www.quantum-network.com/knowledge-base/

Rigetti QCS (pyQuil)

Platform Rigetti QCS

Properties • The Rigetti Quantum Cloud Service provides access to Rigetti QPUs

(quantum processors)

• The Forest SDK contains software tools for creating programs in Quil that

are then executed using QCS or a simulator

• The Forest SDK consists of three components:

• pyQuil: Python library for building and running programs in Quil

• quilc: Compiler for Quil Programs

• QVM: virtual machine for simulating a quantum computer

Applications • Creating simulations or programs in Quil

• Use of Rigetti's QPUs

Language • pyQuil: Python

• quilc, QVM: Common Lisp

License • pyQuil, quilc : Apache 2.0 License

• QVM: Rigetti License File

Access • Registration is required for QCS

• Otherwise no restrictions

OS • Platform-independent: Python interface or browser required

Repository • pyQuil in GitHub

• quilc in GitHub

• QVM in GitHub

Documentation • User guides on QCS homepage

• (API) References on homepage

https://docs.rigetti.com/qcs/
https://qcs.rigetti.com/qpus/
https://docs.rigetti.com/qcs/guides/quil
https://docs.rigetti.com/qcs/references/pyquil
https://docs.rigetti.com/qcs/references/quilc
https://docs.rigetti.com/qcs/references/qvm
https://www.rigetti.com/get-quantum
https://github.com/rigetti/pyquil
https://github.com/quil-lang/quilc
https://github.com/quil-lang/qvm/
https://docs.rigetti.com/qcs/guides/
https://docs.rigetti.com/qcs/references/

Chapter B: Self-Installation Simulators

Simulators for self-installation are usually free of charge and freely available without registration.

They are particularly suitable for getting an initial overview of programming and simulation with

QuBits. In addition to the creation of (graphical) quantum circuits and algorithms, QKD and

quantum network simulators offer the opportunity to investigate the impact and influence of

this new technology on current computer networks in more detail.

Quantum Circuit Simulators

blueqat

Simulator blueqat

Properties • Simulator written in Python with graphical output

• Well suited to control circuits, qubit states etc... to illustrate

Applications • bluegat is suitable for defining circuits, machine learning applications and

optimization tasks

Language • Python / Jupyter Notebook

License • Apache 2.0 License

Access • Free access (GitHub)

OS • Platform-independent: Python required

Repository • bluegat in GitHub

Documentation • Has well-described tutorials

Cirq

Simulator/Library Cirq

Properties • Cirq can be used to build and simulate quantum circuits

• Google's quantum simulator with extensive documentation

• Used in Google Quantum AI

Applications • Simulation of quantum circuits

• Testing algorithms (on a quantum basis)

Language • Python

License • Apache 2.0 License

Access • Code freely available on GitHub

OS • Platform-independent: requires Python

Repository • GitHub

Documentation • Good documentation, tutorials and numerous examples available

https://github.com/Blueqat/Blueqat
https://github.com/Blueqat/Blueqat
https://github.com/Blueqat/Blueqat-tutorials
https://quantumai.google/cirq/?hl=de
https://github.com/quantumlib/cirq

myQLM

Simulator myQLM

Properties • Simulator developed by Atos for designing and simulating programs in the

field of quantum technology

• In addition to myQLM, Atos offers other services in the field of quantum

technology such as QLaaS (Quantum Learning as a Service), Q-Score and

the QLM User Club

• Provides interfaces to other well-known simulators such as ProjectQ and

Qiskit

• API for implementing plugins

Applications • Creation of quantum circuits and simulations

Language • Python, Jupyter Notebook, HTML, OpenQASM

License • Atos myQLM EULA

Access • Installation possible without registration

OS • Platform-independent: requires Python interpreter

Repository • Available on GitHub

Documentation • Documentation and examples can be found on the myQLM homepage

Ocean

Simulator Ocean

Properties • Ocean is a toolbox developed by D-Wave

Applications • Used to solve difficult optimization problems with quantum computers.

• Application examples or problems are Map Coloring, Vertex Cover,

Postprocessing with Greedy Solver

Language • Python

License • Apache 2.0 License (Ocean SDK)

Access • SDK installation possible without restrictions

• Registration is required to use the Leap Quantum Cloud Service

OS • Platform-independent: Python interpreter required

Repository • Available on GitHub

Documentation • Documents on different D-Wave toolboxes and further information are

available here

https://myqlm.github.io/
https://atos.net/en-gb/united-kingdom/accelerating-quantum-revolution
https://atos.net/en/solutions/q-score
https://atos.net/en/solutions/atos-qlm-user-club
https://myqlm.github.io/myqlm_specific/license.html#license
https://myqlm.github.io/myqlm_specific/install.html
https://github.com/myQLM
https://myqlm.github.io/index.html
https://docs.ocean.dwavesys.com/en/stable/
https://cloud.dwavesys.com/leap/signup/
https://github.com/dwavesystems/dwave-ocean-sdk
https://docs.dwavesys.com/docs/latest/index.html
https://docs.dwavesys.com/docs/latest/index.html

ProjectQ

Simulator ProjectQ

Properties • ETH Zurich project

• "High Level" Language for Quantum Programs

• Modular and customizable compiler

• Backend interface can be selected: e.g. classic or Q hardware

• Also has a "Fermilib" library for solving fermion problems on quantum

computers

• There is also the option in the backend to have the program translated for

IBM Quantum hardware

Applications • Suitable for creating Q applications that are to run on several backends

(e.g. classic computer, Q hardware)

Language • Python

License • OpenSource: Apache 2 License

Access • No restrictions:

OS • Platform-independent: Python interpreter required

Repository • Available on GitHub

Documentation • ProjectQ documentation page

pyQuil

Simulator pyQuil

Properties • Is part of the Rigetti Forest SDK

• Allows you to create and run Quil programs in Python

• Quil requires the installation of the Quil compiler and QVM (Quantum Virtual

Machine)

Applications • The Forest SDK or pyQuil is used as part of the QCS (Quantum Cloud

Service) to offer users the possibility to use QPU's (quantum processors)

via QCS

Language • Python

License • pyQuil: Apache 2.0 License

Access • Installation of pyQuil possible without registration

• Registration is required to use QCS

OS • pyQuil: platform-independent. Python interpreter required

Repository • pyQuil: Available on GitHub

Documentation • various topics and tutorials in QCS are available here

• Documentation and examples of pyQuil can be found on the pyQuil

homepage page

https://projectq.ch/
https://github.com/projectq-framework
https://projectq.readthedocs.io/en/latest/
https://pyquil-docs.rigetti.com/en/stable/index.html
https://docs.rigetti.com/qcs/references/quilc
https://docs.rigetti.com/qcs/references/qvm
https://docs.rigetti.com/qcs/references/quilc
https://qcs.rigetti.com/qpus/
https://pyquil-docs.rigetti.com/en/stable/start.html
https://www.rigetti.com/get-quantum
https://github.com/rigetti/pyquil
https://docs.rigetti.com/qcs/guides
https://pyquil-docs.rigetti.com/en/stable/index.html

Microsoft QKD (Q#)

Simulator QDK

Properties • The Microsoft Quantum Development Kit (QDK) contains four simulators

for Q# programs

• Q# is a programming language developed by Microsoft with its own syntax

specifically for programming in the field of quantum technology

• Q# and Quantum Development Kit can also be used without an Azure

subscription

• Q# or QDK can be used to build applications for Quantum Azure

• Q# programs can also be run with Jupyter Notebook

Applications • Focus is on the development of complex applications or algorithms (not just

simple circuits)

Language • Q# has its own syntax based on Python, C#, F#

License • Microsoft (QDK)

Access • Available for free download

• Q# is open source

• Can also be used online (without downloading) via Visual Studio

Codespaces, but this service is not free of charge

• QDK can be used via Visual Studio and Visual Studio Code

OS • Platform-independent when used via Visual Studio Code

• Only via Windows when used via Visual Studio

Repository • Quantum Libraries by Microsoft on GitHub

Documentation • Download QDK

• Q# and QDK documentation

QCircuits

Simulator QCircuits

Properties • based on the quantum circuit model

• Simple interface for ease of use

Applications • Simulation and investigation of the behavior of quantum computers

• Investigation and construction of the behavior of Q-circuits

Language • Python package

License • WITH License

Access • Installation without registration

Repository • Available on GitHub

Documentation • Tutorials, examples, documentation available on the QCircuits homepage

https://marketplace.visualstudio.com/items?itemName=quantum.DevKit
https://github.com/microsoft/QuantumLibraries
https://marketplace.visualstudio.com/items?itemName=quantum.DevKit
https://azure.microsoft.com/de-de/resources/development-kit/quantum-computing/
http://www.awebb.info/qcircuits/index.html
https://en.wikipedia.org/wiki/Quantum_circuit
http://www.awebb.info/qcircuits/index.html
https://github.com/grey-area/qcircuits
http://www.awebb.info/qcircuits/index.html#documentation-tutorial-and-examples

Qiskit

Simulator Qiskit

Properties • IBM-Developed Quantum Simulator Framework

• Developed circuits can also be tested on real IBM hardware after

registration (IBM Quantum)

• Also includes a module that can be used to graph circuits

• Other circuit simulators (such as "extended Clifford, Schrödinger") are

available in the IBM Cloud

• Noise models like Pauli, depolarization etc... available

Applications • Modeling and Simulation of Circuits

• Execution of the programs on real quantum hardware developed by IBM

• Simulation of (existing) quantum hardware

Language • Framework written primarily in Python

• Other languages used: C++, OpenQASM, Typescript, Vu

License • Open Source Framework

• Apache 2.0 License

Access • Qiskit is free to download and install and does not require registration

• Registration required when using the IBM Cloud and/or testing programs

on real quantum hardware

OS • Platform-independent: Python interpreter required

Repository • Simulators, other tools and projects for Qiskit are available on GitHub

Documentation • Qiskit Textbook with numerous examples and explanations

Quantum Computing Playground

Simulator Quantum Computing Playground

Properties • WebGL Project in Chrome

• Still in the experimental stage

• Simulates a quantum computer (on GPU) with its own scripting language

• Up to 22 qbits can be simulated

• 3D visualization of Q states

Applications • 3D simulations of quantum states and gates

Language • Chrome Project: Source code not accessible

License • n/a

Access • Targeted at google chrome

OS • Platform-independent: browser required

Repository • no repository available

Documentation • Examples available on the homepage under Examples

https://qiskit.org/
https://quantum-computing.ibm.com/lab
https://github.com/Qiskit
https://qiskit.org/textbook/preface.html
http://www.quantumplayground.net/

Quantum JavaScript (Q.js)

Simulator Quantum JavaScript (Q.js)

Properties • Simulator for quantum circuits

• Drag and drop editor for web browsers

• Circuits can also be defined via source code, which is then displayed as a

circuit

• Output of the circuits is displayed graphically

Applications • Graphical creation of Q-circuits

Language • Javascript, HTML, CSS

License • WITH License

Access • Via web browser or as a download via GitHub

OS • Platform-independent: browser required

Repository • Available on GitHub

Documentation • Examples and API documentation available on the Q.js homepage

https://quantumjavascript.app/
https://github.com/stewdio/q.js

Qubit Toaster

Simulator Qubit Toaster

Properties • Part of the QUANTASTICA project, which focuses on the development of

software tools and solutions in the field of quantum computing

• The Qubit Toaster is a high-performance quantum circuit simulator

designed for speed.

• It is based on algorithms for circuit optimization and efficient execution.

• It can be used standalone or together with common quantum programming

frameworks, e.g. Qiskit, Quantum Programmingt Studio.

Applications • For quantum simulations that are to be executed at higher or improved

speed (HPC)

Language • n/a

License • n/a

Access • No restrictions

OS • available for Linux, MacOS and Windows

Repository • no repository: program is installed via precompiled binary

Documentation • Use of QuBit Toaster described on homepage

Quest

Simulator Quest

Properties • distributed, GPU-accelerated simulator of universal quantum circuits, state

vectors, and density matrices.

• QuEST is an open-source and standalone C/C++ library

• Simulation of dephasing and depolarizing noise possible

• The same code can be used seamlessly on all hardware backends, and the

simulation cost and accuracy can be changed at compile time.

• QuEST is currently the only active distributed QC simulator and the first and

only one to support a distributed density matrix.

Applications • Simulation of quantum circuits, status vectors and density matrices

Language • C/C++, Cuda, JavaScript

License • WITH License

Access • No restrictions: download and install for free

OS • Available for MacOS, Linux and Windows

Repository • Available on GitHub

Documentation • Tutorials and examples are available here

https://quantastica.com/toaster/
https://quantastica.com/
https://quantastica.com/toaster/
https://quest.qtechtheory.org/
https://quest.qtechtheory.org/download/
https://github.com/QuEST-Kit/QuEST
https://quest.qtechtheory.org/docs/

Qibo

Simulator Qibo

Properties • QIBO is an API for quantum simulations and control of quantum hardware

Applications • Consideration of the properties of hardware components such as NISQs

when performing simulations

Language • Python

License • Apache License Version 2.0

Access • No restrictions

OS • Platform-independent: Python interpreter required

Repository • Available on GitHub

Documentation • Documentation page of Qibo

QuTip

Simulator QuTIP

Properties • QuTiP (Quantum Toolbox in Python) is an open-source software for

simulating the dynamics of open quantum systems.

• graphical output via Matplotlib.

Applications • is used for efficient numerical simulations of Hamiltonian functions in areas

such as quantum optics, ion traps

Language • Python, HTML. Shell

License • BSD-3 Clause License, No License Fees

Access • No restrictions

OS • Linux, MacOS, Windows

Repository • Available on GitHub

Documentation • Documentation and tutorials available on the homepage

Quirk

Simulator Quirk

Properties • Quirk is an online graphical simulator for (simple) quantum circuits.

• There are also prefabricated circuits that can be used to simulate quantum

teleportation, for example

Applications • Suitable for demonstrating or analyzing the behavior of quantum circuits

• Generation of quantum circuits via drag and drop

Language • Source code available on GitHub (JavaScript)

License • Apache 2.0 License

Access • No restrictions (OpenSource)

OS • Platform-independent: Browser required

Repository • Available on GitHub

Documentation • User guide and video tutorial available

https://github.com/Quantum-TII/qibo
https://github.com/qiboteam/qibo
https://qibo.readthedocs.io/en/stable/index.html
https://qutip.org/
https://github.com/qutip
https://qutip.org/documentation.html
https://qutip.org/tutorials.html
https://algassert.com/quirk
https://github.com/Strilanc/Quirk
https://github.com/Strilanc/Quirk/wiki/How-to-use-Quirk
https://www.youtube.com/watch?v=aloFwlBUwsQ

Silq

Simulator Silq

Properties • Developed by ETH Zurich

• Silq is a high-level language among the programming languages for

quantum circuits and computers and is easier to use than, for example,

OpenQASM

• In addition to the simple and plain design, quantum mechanical properties

are already taken into account that the user does not have to worry about

(anymore), so that the code is less error-prone

• An important criterion in quantum computing is the so-called

uncomputation, i.e. the reset of QuBits to the initial state, which are used to

store intermediate results. These bits are also known as ancilla bits. This

reset has to be done with quantum computers, as there are usually only

very limited QuBits available and they are to be reused. In classic

computers, this task is performed by a garbage collector after a program

has been executed

• Intuitive variable types for quantum states such as entanglement,

superposition states, etc...

Applications • Creating programs for quantum computers

• Investigation of quantum circuits

Language • Q#, D, Tex, Python

License FreeBSD License

Access • No restrictions: download and install without registration

OS • VS Code is required to install the Silq plug-in

Repository • Available on GitHub

Documentation • Documentation and examples available on the homepage

https://silq.ethz.ch/
https://silq.ethz.ch/install
https://github.com/eth-sri/silq
https://silq.ethz.ch/documentation
https://silq.ethz.ch/examples

Strawberry Fields

Simulator Strawberry Fields

Properties • Python library developed by Xanadu

• Used to simulate and execute programs on quantum hardware based on

photons

• Large selection of tutorials and examples from the field of quantum

photonics

• Provides access to the first fully programmable photon quantum

computer via the Xanadu Cloud

Applications • Programs/simulations for quantum hardware based on photons

Language • Python Libraries

License • Apache 2.0 License

Access • No restrictions

OS • Platform-independent: Python interpreter required

Repository • Available on GitHub

Documentation • Documentation and examples can be found on the Strawberry Fields

homepage under Documentation

XACC

Simulator XACC

Properties • Framework for hybrid (classical-quant) computer architectures

• Supports programming in the classical and quantum environment

• Provides the ability to execute quantum code on quantum processors

from Rigetti, IBM, IonQ, and others

• Based on the C++ Micro Services project

Applications • Hybrid computer architectures, executing quantum code on different

computer architectures or processors

Language • C++

License • Eclipse Public License and Eclipse Distribution License, BSD-3 Clause

Access • No restrictions

OS • Ubuntu 16.04/18.04, Centos 7, Fedora 7/30, MacOS X

• C++ Compiler and CMake Required

Repository • Available on GitHub

Documentation • Tutorials, examples and further information can be found on the XACC

documentation page

https://strawberryfields.ai/
https://platform.xanadu.ai/auth/realms/platform/protocol/openid-connect/registrations?client_id=public&redirect_uri=https%3A%2F%2Fcloud.xanadu.ai%2Flogin&response_type=code
https://strawberryfields.ai/photonics/hardware/
https://github.com/xanaduai/strawberryfields
https://strawberryfields.readthedocs.io/en/stable/index.html
https://github.com/ORNL-QCI/xacc
http://cppmicroservices.org/
https://github.com/eclipse/xacc/blob/master/LICENSE.EPL
https://github.com/eclipse/xacc/blob/master/LICENSE.EDL
https://github.com/eclipse/xacc
https://xacc.readthedocs.io/en/latest/index.html
https://xacc.readthedocs.io/en/latest/index.html

Quantum Network Simulators

Interlin-q

Simulator Interlin-q

Properties • Simulator using a master-slave control structure in a quantum network

• With Interlin-q, individual circuits as well as distributed algorithms can be

defined and simulated in a quantum network topology

• Quantum circuits are transferred to a quantum computer architecture and

the communication between the individual nodes is regulated according to

the master-slave principle

Applications • Build and test distributed quantum algorithms on different quantum

computer architectures

Language • Python

License • WITH License

Access • No restrictions

OS • Platform-independent: Python interpreter required

Repository • Available on GitHub

Documentation • Interlin-q Documentation Page

NetSquid

Simulator NetSquid

Properties • Models the influence of time in quantum networks and computer systems

• Modular structure: Individual components can be nested inside each other

(Quantum Computing Library)

Applications • For the design/simulation of a quantum-based internet

• For the design of modular quantum computer architectures

• Performance Investigation of the Physical Layer (Quantum Hardware) of

Quantum Networks

Language • Python Package

License • WITH License

Access • Free, but registration required for download

OS • Platform-independent: Python interpreter required

Repository • GitHub repository only available with examples

Documentation • Available on Netsquid's homepage

https://github.com/Interlin-q/Interlin-q
https://github.com/Interlin-q/Interlin-q
https://interlin-q.github.io/Interlin-q/
https://netsquid.org/
https://github.com/ccicconetti/netsquid
https://forum.netsquid.org/

OpenQL

Simulator OpenQL

Properties • Framework for quantum programming in Python/C++

• Unlike Qiskit, for example, the focus is on generating assembly code for

various (micro-) architectures of QuTech

• The format of the assembly code is cQASM (Quantum Assembly

Language)

• Format of the output code depends on the platform

Applications • To generate code for QuTech architectures

Language • C++, Python, HTML, JavaScript, OpenQASM

License • Apache 2.0 License

Access • No restrictions

OS • Platform-independent: Python interpreter required

Repository • Available on GitHub

Documentation • OpenQL documentation page

QuISP

Simulator QuISP

Properties • Event-controlled simulator for quantum repeater networks

• The aim of the project is to simulate 100 networks with 100 nodes each

• With such large networks, it is not possible to simulate them at the

Hamiltonian level or CNOT gate; therefore, only Q misstates are recorded

and not the complete Q status (error basis)

• Supports all except "Pauli" error types (different from other simulators)

• Setting link lengths in the network, gate error rates, memory states of

individual Q-bits

• Requires OmNET++ and Eigen, a matrix calculator for C/C++

• QuISP is a product of the AQUA (Advances Quantum Architecture)

research group

Applications • Protocol Design

• Investigation of the behavior of large complex heterogeneous networks

Language • C++, Python, Shell

License • BSD 3 Clause License

Access • None: Download and install for free

OS • Available for Linux, Windows and MacOS

Repository • Available on Github

Documentation • Documentation OmNET++

• Documentation QuISP

https://github.com/QE-Lab/OpenQL
https://github.com/QuTech-Delft/OpenQL
https://openql.readthedocs.io/en/latest/index.html
https://aqua.sfc.wide.ad.jp/quisp_website/
http://aqua.sfc.wide.ad.jp/
https://omnetpp.org/download/
https://github.com/sfc-aqua/quisp/blob/master/doc/INSTALL.md
https://github.com/sfc-aqua/quisp/
https://omnetpp.org/documentation/
https://github.com/sfc-aqua/quisp/tree/master/doc

QuNetSim

Simulator QuNetSim

Properties • Simulator for quantum networks

• Provides framework for the development of protocols in quantum networks

• Already contains quantum basic technologies such as quantum

teleportation, QKD generation etc...

• Uses the Python graphical networkx library to display and generate

networks

• Event-controlled simulator

• Treats quantum networks like classical networks in terms of the layer model

Applications • For example, suitable for tracking (step by step) a QuBIt teleportation in the

Q-network

• For trying out or creating network protocols at a "high level" level

• Not suitable for accurate simulation of quantum effects

• Suitable for beginners in quantum networks

Language • Python

License • WITH License

Access • No restrictions: download and install for free

OS • Platform-independent: Python interpreter required

Repository • Available on GitHub

Documentation • Documentation available here

SeQUeNCe

Simulator SeQUeNCe

Properties • Used to analyze effects in quantum networks on the lower network layers,

such as the caching of quantum states

Applications • To test protocols, network parameters, and topologies

Language • C++, Python, Makefile

License • Open Source License

Access • No restrictions

OS • Platform-independent: Python interpreter required

Repository • Available on GitHub

Documentation • SeQUeNCe Documentation Page

https://tqsd.github.io/QuNetSim/
https://github.com/tqsd/QuNetSim
https://tqsd.github.io/QuNetSim/
https://github.com/sequence-toolbox/SeQUeNCe
https://github.com/sequence-toolbox/SeQUeNCe/blob/master/LICENSE
https://github.com/sequence-toolbox/SeQUeNCe/
https://sequence-toolbox.github.io/index.html

SimulaQron

Simulator SimulaQron

Properties • Simulator for application layer in quantum networks

• Developed by QuTech

• Provides infrastructure of distributed Q processors connected via Q

communication channels

• Each Q processor is available via a server that runs on a normal PC (also

distributed on different PCs); SimulaQron connects the processors to

transmit Q-bits and entanglement over distances

• The simulated hardware can then be accessed via Python, C libraries or

the CQC interface

Applications • Creation of own applications for the "quantum internet"

• Development of software engineering concepts and libraries for Quantum

Internet

Language • Python

License • See license file

Access • No restrictions

OS • Platform-independent: Python interpreter required

Repository • Available on GitHub

Documentation • Installation

• SimulaQron Documentation

SQUANCH

Simulator SQUANCH

Properties • developed for the simulation of quantum networks

• was developed as part of the INQNET program

• contains classical and quantum error models

• Protocols such as Quantum Error Correction included in examples (as

source code)

Applications • For testing network protocols and quantum transmission

• Simulation of multiparty networks

Language • Python

License • WITH License

Access • No restrictions

OS • Platform-independent: Python interpreter required

Repository • Available on GitHub

Documentation • SQUANCH Documentation Page

http://www.simulaqron.org/
https://qutech.nl/
https://github.com/SoftwareQuTech/SimulaQron/blob/master/LICENSE
https://github.com/SoftwareQuTech/SimulaQron
https://softwarequtech.github.io/SimulaQron/html/GettingStarted.html
https://softwarequtech.github.io/SimulaQron/html/index.html
https://pypi.org/project/SQUANCH/
http://inqnet.caltech.edu/
https://github.com/att-innovate/squanch
https://att-innovate.github.io/squanch/

QKD Simulators

QKDNetSim

Simulator QKDNetSim

Properties • It is a QKD simulation module that is embedded in the established NS-3

simulator for networks

• Therefore, no complete quantum simulator

• Networks can be scanned on a QKD basis in overlay or TCP/IP mode

• Based on the NS-3 Network Simulator (s. here)

• QKDNetSim can also be used via a web interface

Applications • Suitable for investigating the effects or behaviour in conventional networks

Language • C/C++, Python, Perl

License • GPL 2.0 License

Access • No restrictions

OS • Linux

Repository • Available on GitHub

Documentation • QKDNetSim Documentation

QKDSimulator

Simulator QKDSimulator

Properties • Online simulator that can be used to analyze and simulate QKD protocols

• Parameters (number of QBits, fault tolerance etc...) can be set via sliders

• There are 4 simulator types to choose from: Complete QKD Stack, Sifting,

Biased Error Estimation and Shannon Bound

• After simulation, results are summarized under their own tab

• Plots for the results are also available

Applications • Simulator for certain initial values for QKD

Language • Python Program

License • N/A

Access • No restrictions

OS • Platform-independent: web browser required

Repository • no respository

Documentation • available on website

https://www.qkdnetsim.info/
https://www.qkdnetsim.info/
https://open-qkd.eu/
https://github.com/QKDNetSim/qkdnetsim-dev
https://www.qkdnetsim.info/documentation/
https://www.qkdsimulator.com/
https://www.qkdsimulator.com/documentation

Quantum annealing

D-Wave Ocean

Simulator D-Wave Ocean

Properties • D-Wave Ocean is a software suite consisting of several independent

packages

• Each package is designed for an individual application: For example,

dwave-hybrid is suitable for solving mathematical problems on hybrid

(classical + based on quantum) architectures

Applications • Solving hard-to-calculate mathematical problems. Depending on the

software package, the code can also be executed on quantum annealers

from D-Wave

Language • Different programming languages. Depending on the respective D-Wave

Ocean package. Most packages are in Python or C++

License • Apache 2.0 license or MIT license. Depending on the respective software

package

Access • No restrictions

OS • Installation tested for Linux, Mac OS and Windows

Repository • Available on GitHub

Documentation • D-Wave Ocean Software Products Documentation Page

https://docs.ocean.dwavesys.com/en/stable/index.html
https://docs.ocean.dwavesys.com/en/stable/docs_hybrid/sdk_index.html
https://github.com/orgs/dwavesystems/repositories?page=1&type=all
https://docs.dwavesys.com/docs/latest/index.html

Other simulators

Other simulators can be found on the following URLs:

https://www.win-labor.dfn.de/quantentechnologien/quantensimulation/

https://quantiki.org/wiki/list-qc-simulators

https://github.com/qosf/awesome-quantum-software

https://qosf.org/project_list/

https://www.win-labor.dfn.de/quantentechnologien/quantensimulation/
https://quantiki.org/wiki/list-qc-simulators
https://github.com/qosf/awesome-quantum-software

