Quantum Simulators Catalog

Overview of important quantum simulators

Table of contents

OVERVIEW	2
Analog Quantum Simulators Quantum Computer Emulator Quantum Circuit Simulators Quantum Network Simulators QKD Simulators	2 2 3 3 3
CHAPTER A: SIMULATION WITH PLATFORMS	4
Amazon Braket Azure Quantum (Q#/QKD) Google Quantum AI (Cirq) IBM Quantum (Qiskit) QUANTASTICA (QPS /Qubit Toaster) Quantum Programming Studio Quantum Inspire Quantum Network Explorer (NetSquid) Rigetti QCS (pyQuil)	4 5 7 8 8 10 11 12
CHAPTER B: SELF-INSTALLATION SIMULATORS	13
Quantum Circuit Simulators blueqat Cirq myQLM Ocean ProjectQ pyQuil Microsoft QKD (Q#)	13 13 14 14 15 15 16

QCircuits Oiskit	16 17
Quantum Computing Playground	17
Quantum JavaScript (Q.js)	18
Qubit Toaster	19
Quest	19
Qibo	20
QuTip	20
QUIRK	20
SIIQ Strawberry Fields	21 22
	22
	~~
Quantum Network Simulators	23
Interlin-q	23
NetSquid	23
OpenQL	24
QuISP	24
QUNETSIM	25 25
Sequence	25
SOUANCH	20
	20
QKD Simulators	27
QKDNetSim	27
QKDSimulator	27
Quantum annealing	28
D-Wave Ocean	28
OTHER SIMULATORS	29

Overview

The term quantum simulator is ambiguous and is used for analog quantum simulators that work on the basis of quantum phenomena, as well as for software for simulating quantum computers or effects. Therefore, it is first necessary to present the correct technical terms and their meaning.

Analog Quantum Simulators

Analog quantum simulators are systems to simulate the behavior of a quantum system and its quantum effects by another, more controllable system.

Analog quantum simulators are used, among other things, to analyze the behavior of molecules, which can lead to faster drug development. In materials research, the potential of quantum simulators lies in the research of new catalysts, e.g. for the Haber-Bosch process for the production of ammonia: With better catalysts, the energy costs for this process could be significantly reduced.

Analog simulators have the advantage that they are subject to the same physical systems and laws as the target system to be analyzed. Therefore, they work more effectively compared to (digital) supercomputers and can solve problems faster.

A special feature are the so-called quantum annealers from the company D-Wave from Canada. These exploit quantum mechanical effects to obtain solutions for optimization tasks that would require too much time for a classical computer. The advantage of quantum annealers, in contrast to analog quantum simulators, is the free adjustability. However, these cannot be used universally, but are only suitable for optimization tasks.

An example of the development of an analogue quantum simulator is the goal of the PASQUanS project within the framework of the EU Quantum Flagship project. As part of PASQUanS, an analog quantum simulator with 1000 atoms or ions is to be created, which is to be universally programmable.

Quantum Computer Emulator

Since there is still no quantum computer that can be universally programmed for any type of problem and the use of such computers to solve practical tasks is only in its infancy, so-called quantum computer emulators are used. These simulate the behavior of a quantum computer and the associated QuBits on a classical computer and allow software solutions and algorithms for (future) quantum computers to be tested and developed now. In the following, the terms quantum simulator or simulation refer exclusively to quantum computer emulators; pure analog simulators are not considered further in this document.

Quantum simulators are used, for example, to study the behavior and influence of quantum technologies on areas such as communication networks, cyber security, and computing power. Since the integration of applications and concepts based on quantum hardware into conventional technologies is still in its infancy, quantum simulators already offer the possibility of analyzing predictions and effects of this future technology.

There are now a large number of providers and software for quantum simulators. Above all, large corporations (IBM, Google, Amazon, Microsoft), which themselves produce and further develop existing quantum computers, offer quantum simulators with comprehensive libraries and graphical tools – mostly free of charge. After prior free registration, for example, programs can be run on an IBM quantum computer with the Qiskit simulator developed by IBM.

In general, there are some special features when working with QuBits (not simulated): These include, for example, that quantum computers are susceptible to errors resulting from thermal noise, loss of photons, etc. The consequence is that the states of QuBits are manipulated and consequently errors occur in the calculations. Although there are also software packages for simulating quantum errors, simulation software can only reproduce the real hardware system to a limited extent due to external influences.

Depending on the area of application, quantum simulators can be divided into different categories:

Quantum Circuit Simulators

These types of simulators are suitable for simulating fundamental properties of quantum technologies such as single qubits, entanglement or quantum teleportation.

Quantum Network Simulators

These simulators are intended to simulate networks that are (should) be operated with quantum hardware components in a simplified way and are also able to model partly the transfer of quantum states up to the physical layer.

QKD Simulators

QKD (Quantum Key Distribution) simulators are used at the application layer to simulate key generation, transmission and exchange. Since a QKD key is a random number, this simulation method is also suitable as a random number generator.

Chapter A: Simulation with Platforms

This chapter describes online platforms that make it possible to create simulations online and, if necessary, upload them from a private PC. In addition, many platform operators offer access to real quantum hardware, e.g. quantum processors and "classical" simulators for several QuBits, after registration. Depending on the provider, there are also costs for using this service.

Amazon Braket

Platform	Amazon Braket
Properties	Amazon Braket is a platform from AWS (Amazon Web Services) that
	enables working with various types of quantum computers and circuit
	simulators
	Creating Quantum Projects in a Cloud
	Can be run on real quantum hardware
	Provides advice and support to users and businesses through the <u>Quantum</u>
	Solutions Lab
	• Enables the use of <u>quantum computers</u> or processors from D:Wave, IonQ,
	Rigetti, OQC and soon also from QuEra
	AWS offers a <u>Cloud Credit</u> program for scientists
Applications	To develop and build quantum algorithms
	Testing algorithms with quantum simulators
	Linking to other AWS products
	AWS Braket Services are also used by companies to develop quantum
	technologies or products for customers (see S. <u>here</u>)
Language	The Braket SDK (Software Development Kit) is a library written in Python
	Braket SDK is OpenSource
License	Amazon Braket SDK: Apache 2.0 License
Access	Installation and download of the Braket SDK is free of charge
	Use of simulators and quantum hardware usually subject to a fee
OS	Platform-independent: Python interpreter required
Repository	<u>GitHub</u> repository of the Amazon-Braket SDK
Documents	Examples of Braket

Azure Quantum (Q#/QKD)

Platform	Azure Quantum
Properties	Platform of the Microsoft cloud service Azure, which allows users to create
	quantum software
	Provides access to computers based on ion traps from the manufacturers
	IonQ and Honeywell
	Provides optimization algorithms for quantum annealing (without hardware)
Applications	• Simulation of quantum circuits, optimization tasks, simulation of a complete
	quantum computer with the Fullstack Simulator (QKD)
Language	• Q#
	Python
License	
Access	Azure account can <u>be created for free</u> here
	Access to quantum hardware or booking of computing resources for a fee
OS	Azure packages can be installed platform-independent
Repository	Libraries of Q#
Documentation	<u>Q Tutorials and Documentation#</u>

Google Quantum AI (Cirq)

Platform	Google Quantum Al
Properties	Google Quantum AI (GQA) includes a collection of tools for developing quantum algorithms
	Quantum algorithms for simulators and quantum hardware are written using the Python library Cirq
	• It is possible to test programs written in Cirq via the Quantum Computing Service on real quantum hardware.
	GQA also contains numerous links to current research areas and publications on the topic of quantum technology and educational offers
	• In addition to Cirq, GQA also offers libraries for simulating fermionic systems (OpenFermion) and another for hybrid (classical/quantum)
	machine learning (TensorFlow Quantum)
Applications	Creation and simulation of quantum algorithms or quantum circuits
Language	Python
License	Cirq: Apache 2.0 License
Access	Download Cirq for free
	The Quantum Computing Service is not currently available to the public
	Other libraries such as OpenFermion and TensorFlow Quantum are also available for free
OS	Cirq can be used platform-independently, as long as Python is supported
Repository	Cirq on <u>GitHub</u>
Documentation	Cirq Documentation and Tutorials
	Other software and packages from GQA: see <u>here</u>

IBM Quantum (Qiskit)

Platform	IBM Quantum
Properties	IBM Quantum is an IBM platform for quantum technologies
	The Quantum Composer can be used to create and test quantum circuits
	online
	The IBM Quantum Lab service allows users to create and test programs
	created with Qiskit online (without installation) in Jupyter Notebook
	• The website also contains an overview of quantum simulators and (hybrid)
	hardware systems operated by IBM
	 Also includes programs to support <u>scholars</u> and <u>faculty</u> in the field
	Provides access to real quantum hardware on which quantum circuits can
	be tested, for example
Applications	Online Modeling and Simulation of Circuits
	Execution of the programs on real quantum hardware developed by IBM
	Simulation of (existing) quantum hardware
Language	Python Library
License	Apache 2.0 License
Access	Circuits can be tested on real hardware after registration
	 No installation required for online use, but registration is required
	Registration is <u>free</u>
OS	Platform-independent: only a browser is required to access the platform
Repository	Overview of Qiskit Repositories
Documentation	Page of <u>Qiskit</u>
	IBM Quantum Project Documents

QUANTASTICA (QPS /Qubit Toaster)

Platform	QUANTASTICA
Properties	Organization that develops and deploys various software tools and
	solutions in the field of quantum computing
	• Since May 2019, QUANTASTICA has been a partner of Rigetti in the field
	of application development
	Good networking with other partners: <u>Unitary Zero Space</u> , <u>icebreaker</u> and
	Unitary Fund
	• Simulators developed by QUANTASTICA include the <u>Qubit Toaster</u> and
	<u>quantum circuit</u>
	• The <u>Quantum Programming Studio</u> can be used to carry out graphic
	simulations online and create quantum algorithms
	• The <u>QConverter</u> - as <u>an online</u> or <u>commandline</u> version - is a tool that can
	be used to convert quantum programming languages for specific quantum
	computers into others, e.g. QASM according to PyQuil
	Quantum Algorithm Generator: This tool is used to create quantum circuits
	based on state vectors (reverse engineering). Installation instructions can
	be found <u>here</u> .
Applications	• Depending on the software package used, different tasks such as code
	conversion, creation of simulations or algorithms or quantum circuits can
-	be derived from state vectors
Language	Quantum Circuit Simulator, QConvert: Javascript
	Quantum Algorithm Generator: Python
	Qubit toaster: n/a
License	Quantum Algorithm Generator: Apache 2.0 License
	QConverter, Quantum Circuit: MIT License
-	Qubit toaster: n/a
Access	No restrictions except Quantum Algorithm: Login to Quantum Programming
00	
Denesiter	Platform-independent: Python interpreter or browser (Javascript) required
Repository	Quantum Algorithm Concreter, Qubit Tegeter: net evailable
	Quantum Algorithm Generator, Qubit Toaster. Not available
Documentation	Qubit toaster: s. bere
Documentation	Quantum Circuit: s. here
	Quantum Algorithm Generator: see here
	QConverter: s. here

Quantum Programming Studio

Simulator	Quantum Programming Studio

Properties	The Quantum Programming Studio (QPS) is a web-based graphical
	development environment for quantum algorithms and simulations
	Circuits can be easily created via drag and drop
	QPS is a partner application from Rigetti
	Quantum circuits can be exported as a format for different languages or
	frameworks and run on different simulators and quantum computers such
	as TensorFlow Quantum or Amazon Braket
	QPS is a package extension of the opensource <u>Quantum Circuit Simulator</u>
Applications	Running simulations, creating algorithms for different platforms
Language	Quantum Circuit Simulator: JavaScript
License	MIT License
Access	A free registration is required to use the web interface
OS	OS independent: All you need is a browser with Javascript
Respository	Available <u>on</u> GitHub
Documentation	Documentation on different topics of QPS

Quantum Inspire

Platform	Quantum Inspire
Properties	Quantum Inspire (QI) is a <u>multi-hardware quantum technology platform</u>
	developed by QuTech
	Other partners of the project are <u>listed</u> here
	Provides the ability to test your own quantum algorithms on simulators or
	real-world quantum hardware
	• Algorithms must be written in the cQASM language, which can also be
	displayed graphically (e.g. in the form of quantum circuits).
	• <u>QX</u> is a quantum computer emulator on which up to 34 QuBits can be
	simulated, depending on the account status (<u>emulator backends</u>)
	• Two quantum processors are available <u>as hardware backends</u> : the <u>Spin-2</u>
	with 2 qubits and the <u>Starmon-5</u> with five qubits
Applications	Testing of (quantum) algorithms on real quantum hardware or quantum
	computer emulators
Language	• <u>cQASM</u>
License	 User guidelines and terms of use can be found <u>here</u>.
Access	There are three types of <u>user accounts</u> :
	Anonymous: no registration required, use of the <u>cQASM Online Editor</u> and
	simulation of up to five QuBits on simulator backend possible. No saving of
	projects possible
	Basic Account: <u>Registration</u> required. Project storage possible. Access to
	quantum hardware or processors and use of different emulator backends
	possible
	Advanced/Special Account: for special requests such as registering a
	group of people or expanding the previous account, e.g. for access to more
	QuBits. This can be requested via the account management in the user
	account
OS	Platform-independent: browser required
Repository	no repository available
Documentation	API reference, quick start guide, cQASM manual and code examples are
	available here

Quantum Network Explorer (NetSquid)

Simulator	Quantum Network Explorer
Properties	Enables interactive testing of applications in quantum networks such as
	QKD or distributed CNOT operations
	• Developed by employees of the Dutch research project QuTech on
	quantum technology
	Also includes documentation on various topics related to quantum networks
	such as QKD, security, quantum cloud etc
	• For the development of your own applications for the Quantum Network
	Explorer, the <u>QNE-ADK</u> software can be downloaded
Applications	Suitable for getting a quick overview of the topic of quantum networks and
	to carry out your own small experiments, e.g. QKD transmission from
	Amsterdam to Rotterdam
Language	Written in Python - CLI Interface
License	MIT License
Access	Login required if attempts with the QNE are to be saved online
	Registration for the NetSquid simulator is required if QNE is to be installed
	locally. The reason for this is that QNE uses libraries of this simulator
OS	Browser required for online access
	 MacOS or Linux with Python 3.7 and pip version 19
Respository	QNE-ADK in <u>GitHub</u>
Documentation	Information on quantum networks, quantum technology and user guides on
	QNE and QNE-ADK can be <u>found</u> here

Rigetti QCS (pyQuil)

Platform	Rigetti QCS
Properties	The Rigetti Quantum Cloud Service provides access to Rigetti QPUs
	(quantum processors)
	The Forest SDK contains software tools for creating programs in Quil that
	are then executed using QCS or a simulator
	The Forest SDK consists of three components:
	 <u>pyQuil</u>: Python library for building and running programs in Quil
	<u>quilc</u> : Compiler for Quil Programs
	 <u>QVM</u>: virtual machine for simulating a quantum computer
Applications	Creating simulations or programs in Quil
	Use of Rigetti's QPUs
Language	pyQuil: Python
	quilc, QVM: Common Lisp
License	pyQuil, quilc : Apache 2.0 License
	QVM: Rigetti License File
Access	Registration is required for QCS
	Otherwise no restrictions
OS	Platform-independent: Python interface or browser required
Repository	pyQuil in <u>GitHub</u>
	• quilc in <u>GitHub</u>
	QVM in <u>GitHub</u>
Documentation	<u>User guides</u> on QCS homepage
	(API) <u>References</u> on homepage

Chapter B: Self-Installation Simulators

Simulators for self-installation are usually free of charge and freely available without registration. They are particularly suitable for getting an initial overview of programming and simulation with QuBits. In addition to the creation of (graphical) quantum circuits and algorithms, QKD and quantum network simulators offer the opportunity to investigate the impact and influence of this new technology on current computer networks in more detail.

Quantum Circuit Simulators

blueqat

Simulator	bluegat
Properties	Simulator written in Python with graphical output
	Well suited to control circuits, qubit states etc to illustrate
Applications	• bluegat is suitable for defining circuits, machine learning applications and
	optimization tasks
Language	Python / Jupyter Notebook
License	Apache 2.0 License
Access	Free access (GitHub)
OS	Platform-independent: Python required
Repository	bluegat in <u>GitHub</u>
Documentation	Has well-described <u>tutorials</u>

Cirq

Simulator/Library	Cirq
Properties	Cirq can be used to build and simulate quantum circuits
	 Google's quantum simulator with extensive documentation
	Used in Google Quantum AI
Applications	Simulation of quantum circuits
	 Testing algorithms (on a quantum basis)
Language	Python
License	Apache 2.0 License
Access	Code freely available on GitHub
OS	Platform-independent: requires Python
Repository	<u>GitHub</u>
Documentation	Good documentation, tutorials and numerous examples available

myQLM

Simulator	myQLM
Properties	Simulator developed by Atos for designing and simulating programs in the
	field of quantum technology
	In addition to myQLM, Atos offers other services in the field of quantum
	technology such as <u>QLaaS</u> (Quantum Learning as a Service), <u>Q-Score</u> and
	the <u>QLM User Club</u>
	Provides interfaces to other well-known simulators such as ProjectQ and
	Qiskit
	API for implementing plugins
Applications	Creation of quantum circuits and simulations
Language	Python, Jupyter Notebook, HTML, OpenQASM
License	<u>Atos myQLM EULA</u>
Access	Installation possible without registration
OS	Platform-independent: requires Python interpreter
Repository	Available <u>on</u> GitHub
Documentation	 Documentation and examples can be found on the <u>myQLM</u> homepage

Ocean

Simulator	Ocean
Properties	Ocean is a toolbox developed by D-Wave
Applications	 Used to solve difficult optimization problems with quantum computers.
	• Application examples or problems are Map Coloring, Vertex Cover,
	Postprocessing with Greedy Solver
Language	Python
License	Apache 2.0 License (Ocean SDK)
Access	SDK installation possible without restrictions
	Registration is <u>required</u> to use the Leap Quantum Cloud Service
OS	Platform-independent: Python interpreter required
Repository	Available <u>on</u> GitHub
Documentation	• Documents on different D-Wave toolboxes and further information are
	available here

ProjectQ

Simulator	ProjectQ
Properties	ETH Zurich project
	 "High Level" Language for Quantum Programs
	Modular and customizable compiler
	Backend interface can be selected: e.g. classic or Q hardware
	Also has a "Fermilib" library for solving fermion problems on quantum
	computers
	• There is also the option in the backend to have the program translated for
	IBM Quantum hardware
Applications	Suitable for creating Q applications that are to run on several backends
	(e.g. classic computer, Q hardware)
Language	Python
License	OpenSource: Apache 2 License
Access	No restrictions:
OS	Platform-independent: Python interpreter required
Repository	Available <u>on</u> GitHub
Documentation	ProjectQ documentation page

pyQuil

Simulator	pyQuil
Properties	Is part of the Rigetti Forest SDK
	 Allows you to create and run Quil programs in Python
	Quil requires the installation of the <u>Quil compiler</u> and <u>QVM</u> (Quantum Virtual
	Machine)
Applications	• The Forest SDK or pyQuil is used as part of the QCS (Quantum Cloud
	Service) to offer users the possibility to use <u>QPU's</u> (quantum processors)
	via QCS
Language	Python
License	pyQuil: Apache 2.0 License
Access	Installation of pyQuil possible without registration
	Registration is <u>required</u> to use QCS
OS	 pyQuil: platform-independent. Python interpreter required
Repository	pyQuil: <u>Available</u> on GitHub
Documentation	 various topics and tutorials in QCS are <u>available</u> here
	Documentation and examples of pyQuil can be found on the pyQuil
	homepage page

Microsoft QKD (Q#)

Simulator	QDK
Properties	The Microsoft Quantum Development Kit (QDK) contains four simulators
	for Q# programs
	Q# is a programming language developed by Microsoft with its own syntax
	specifically for programming in the field of quantum technology
	• Q# and Quantum Development Kit can also be used without an Azure
	subscription
	Q# or QDK can be used to build applications for Quantum Azure
	Q# programs can also be run with Jupyter Notebook
Applications	Focus is on the development of complex applications or algorithms (not just
	simple circuits)
Language	Q# has its own syntax based on Python, C#, F#
License	Microsoft (QDK)
Access	Available for free download
	Q# is open source
	Can also be used online (without downloading) via Visual Studio
	Codespaces, but this service is not free of charge
	QDK can be used via Visual Studio and Visual Studio Code
OS	Platform-independent when used via Visual Studio Code
	Only via Windows when used via Visual Studio
Repository	Quantum Libraries by Microsoft on <u>GitHub</u>
Documentation	Download <u>QDK</u>
	Q# and QDK <u>documentation</u>

QCircuits

Simulator	QCircuits
Properties	 based on the <u>quantum circuit</u> model
	Simple interface for ease of use
Applications	 Simulation and investigation of the behavior of quantum computers
	 Investigation and construction of the behavior of Q-circuits
Language	Python package
License	WITH License
Access	Installation without registration
Repository	Available <u>on</u> GitHub
Documentation	Tutorials, examples, documentation available on the <u>QCircuits</u> homepage

Qiskit

Simulator	Qiskit
Properties	IBM-Developed Quantum Simulator Framework
	• Developed circuits can also be tested on real IBM hardware after
	registration (IBM Quantum)
	 Also includes a module that can be used to graph circuits
	• Other circuit simulators (such as "extended Clifford, Schrödinger") are
	available in the IBM Cloud
	Noise models like Pauli, depolarization etc available
Applications	Modeling and Simulation of Circuits
	Execution of the programs on real quantum hardware developed by IBM
	Simulation of (existing) quantum hardware
Language	Framework written primarily in Python
	 Other languages used: C++, OpenQASM, Typescript, Vu
License	Open Source Framework
	Apache 2.0 License
Access	Qiskit is free to download and install and does not require registration
	 Registration required when using the IBM <u>Cloud</u> and/or testing programs
	on real quantum hardware
OS	Platform-independent: Python interpreter required
Repository	Simulators, other tools and projects for Qiskit are <u>available</u> on GitHub
Documentation	Qiskit <u>Textbook</u> with numerous examples and explanations

Quantum Computing Playground

Simulator	Quantum Computing Playground
Properties	WebGL Project in Chrome
	Still in the experimental stage
	Simulates a quantum computer (on GPU) with its own scripting language
	Up to 22 qbits can be simulated
	3D visualization of Q states
Applications	3D simulations of quantum states and gates
Language	Chrome Project: Source code not accessible
License	• n/a
Access	Targeted at google chrome
OS	Platform-independent: browser required
Repository	no repository available
Documentation	Examples available on the homepage under Examples

Quantum JavaScript (Q.js)

Simulator	Quantum JavaScript (Q.js)
Properties	Simulator for quantum circuits
	Drag and drop editor for web browsers
	Circuits can also be defined via source code, which is then displayed as a
	circuit
	Output of the circuits is displayed graphically
Applications	Graphical creation of Q-circuits
Language	 Javascript, HTML, CSS
License	WITH License
Access	Via web browser or as a download via GitHub
OS	Platform-independent: browser required
Repository	Available <u>on</u> GitHub
Documentation	Examples and API documentation available on the Q.js homepage

Qubit Toaster

Simulator	Qubit Toaster
Properties	Part of the <u>QUANTASTICA</u> project, which focuses on the development of
	software tools and solutions in the field of quantum computing
	• The Qubit Toaster is a high-performance quantum circuit simulator
	designed for speed.
	• It is based on algorithms for circuit optimization and efficient execution.
	• It can be used standalone or together with common quantum programming
	frameworks, e.g. Qiskit, Quantum Programmingt Studio.
Applications	• For quantum simulations that are to be executed at higher or improved
	speed (HPC)
Language	• n/a
License	• n/a
Access	No restrictions
OS	available for Linux, MacOS and Windows
Repository	 no repository: program is installed via precompiled binary
Documentation	Use of QuBit Toaster <u>described</u> on homepage

Quest

Simulator	Quest
Properties	distributed, GPU-accelerated simulator of universal quantum circuits, state
	vectors, and density matrices.
	 QuEST is an open-source and standalone C/C++ library
	Simulation of dephasing and depolarizing noise possible
	• The same code can be used seamlessly on all hardware backends, and the
	simulation cost and accuracy can be changed at compile time.
	QuEST is currently the only active distributed QC simulator and the first and
	only one to support a distributed density matrix.
Applications	Simulation of quantum circuits, status vectors and density matrices
Language	C/C++, Cuda, JavaScript
License	WITH License
Access	No restrictions: download and install for free
OS	Available for MacOS, Linux and Windows
Repository	Available <u>on</u> GitHub
Documentation	Tutorials and examples are <u>available</u> here

Qibo

Simulator	Qibo
Properties	QIBO is an API for quantum simulations and control of quantum hardware
Applications	 Consideration of the properties of hardware components such as NISQs when performing simulations
Language	Python
License	Apache License Version 2.0
Access	No restrictions
OS	Platform-independent: Python interpreter required
Repository	Available <u>on</u> GitHub
Documentation	Documentation page of Qibo

QuTip

Simulator	QuTIP
Properties	• QuTiP (Quantum Toolbox in Python) is an open-source software for
	simulating the dynamics of open quantum systems.
	graphical output via Matplotlib.
Applications	• is used for efficient numerical simulations of Hamiltonian functions in areas
	such as quantum optics, ion traps
Language	Python, HTML. Shell
License	BSD-3 Clause License, No License Fees
Access	No restrictions
OS	Linux, MacOS, Windows
Repository	Available <u>on</u> GitHub
Documentation	<u>Documentation</u> and <u>tutorials</u> available on the homepage

Quirk

Simulator	Quirk
Properties	 Quirk is an online graphical simulator for (simple) quantum circuits.
	There are also prefabricated circuits that can be used to simulate quantum
	teleportation, for example
Applications	Suitable for demonstrating or analyzing the behavior of quantum circuits
	Generation of quantum circuits via drag and drop
Language	 Source code available on GitHub (JavaScript)
License	Apache 2.0 License
Access	No restrictions (OpenSource)
OS	Platform-independent: Browser required
Repository	Available <u>on</u> GitHub
Documentation	User guide and video tutorial available

Silq

Simulator	Silq
Properties	Developed by ETH Zurich
	• Silq is a high-level language among the programming languages for
	quantum circuits and computers and is easier to use than, for example,
	OpenQASM
	• In addition to the simple and plain design, quantum mechanical properties
	are already taken into account that the user does not have to worry about
	(anymore), so that the code is less error-prone
	An important criterion in quantum computing is the so-called
	uncomputation, i.e. the reset of QuBits to the initial state, which are used to
	store intermediate results. These bits are also known as ancilla bits. This
	reset has to be done with quantum computers, as there are usually only
	very limited OuPite available and they are to be roused. In classic
	very infined Qubits available and they are to be reused. In classic
	computers, this task is performed by a garbage collector after a program
	has been executed
	• Intuitive variable types for quantum states such as entanglement,
	superposition states, etc
Applications	Creating programs for quantum computers
	Investigation of quantum circuits
Language	Q#, D, Tex, Python
License	FreeBSD License
Access	No restrictions: download and install without registration
OS	VS Code is required to install the Silq plug-in
Repository	Available <u>on</u> GitHub
Documentation	Documentation and examples available on the homepage

Strawberry Fields

Simulator	Strawberry Fields
Properties	Python library developed by Xanadu
	 Used to simulate and execute programs on quantum hardware based on
	photons
	Large selection of tutorials and examples from the field of quantum
	photonics
	 Provides access to the <u>first fully programmable</u> photon quantum
	computer via the <u>Xanadu Cloud</u>
Applications	Programs/simulations for quantum hardware based on photons
Language	Python Libraries
License	Apache 2.0 License
Access	No restrictions
OS	Platform-independent: Python interpreter required
Repository	Available <u>on</u> GitHub
Documentation	• Documentation and examples can be found on the Strawberry Fields
	homepage under <u>Documentation</u>

XACC

Simulator	XACC
Properties	Framework for hybrid (classical-quant) computer architectures
	 Supports programming in the classical and quantum environment
	Provides the ability to execute quantum code on quantum processors
	from Rigetti, IBM, IonQ, and others
	Based on the <u>C++ Micro Services</u> project
Applications	Hybrid computer architectures, executing quantum code on different
	computer architectures or processors
Language	• C++
License	<u>Eclipse Public License</u> and <u>Eclipse Distribution License</u> , BSD-3 Clause
Access	No restrictions
OS	 Ubuntu 16.04/18.04, Centos 7, Fedora 7/30, MacOS X
	C++ Compiler and CMake Required
Repository	Available <u>on</u> GitHub
Documentation	• Tutorials, examples and further information can be found on the XACC
	documentation page

Quantum Network Simulators

Interlin-q

Simulator	Interlin-q
Properties	Simulator using a master-slave control structure in a quantum network
	• With Interlin-q, individual circuits as well as distributed algorithms can be
	defined and simulated in a quantum network topology
	Quantum circuits are transferred to a quantum computer architecture and
	the communication between the individual nodes is regulated according to
	the master-slave principle
Applications	Build and test distributed quantum algorithms on different quantum
	computer architectures
Language	Python
License	WITH License
Access	No restrictions
OS	Platform-independent: Python interpreter required
Repository	Available_on_GitHub
Documentation	Interlin-q Documentation Page

NetSquid

Simulator	NetSquid
Properties	 Models the influence of time in quantum networks and computer systems
	Modular structure: Individual components can be nested inside each other
	(Quantum Computing Library)
Applications	 For the design/simulation of a quantum-based internet
	 For the design of modular quantum computer architectures
	• Performance Investigation of the Physical Layer (Quantum Hardware) of
	Quantum Networks
Language	Python Package
License	WITH License
Access	Free, but registration required for download
OS	Platform-independent: Python interpreter required
Repository	<u>GitHub</u> repository only available with examples
Documentation	Available on <u>Netsquid's</u> homepage

OpenQL

Simulator	OpenQL
Properties	Framework for quantum programming in Python/C++
	Unlike Qiskit, for example, the focus is on generating assembly code for
	various (micro-) architectures of QuTech
	• The format of the assembly code is cQASM (Quantum Assembly
	Language)
	 Format of the output code depends on the platform
Applications	To generate code for QuTech architectures
Language	C++, Python, HTML, JavaScript, OpenQASM
License	Apache 2.0 License
Access	No restrictions
OS	Platform-independent: Python interpreter required
Repository	Available_on_GitHub
Documentation	OpenQL documentation page

QuISP

Simulator	QuISP
Properties	 Event-controlled simulator for quantum repeater networks
	The aim of the project is to simulate 100 networks with 100 nodes each
	• With such large networks, it is not possible to simulate them at the
	Hamiltonian level or CNOT gate; therefore, only Q misstates are recorded
	and not the complete Q status (error basis)
	 Supports all except "Pauli" error types (different from other simulators)
	• Setting link lengths in the network, gate error rates, memory states of
	individual Q-bits
	 Requires OmNET++ and Eigen, a matrix calculator for C/C++
	 QuISP is a product of the <u>AQUA</u> (Advances Quantum Architecture)
	research group
Applications	Protocol Design
	Investigation of the behavior of large complex heterogeneous networks
Language	C++, Python, Shell
License	BSD 3 Clause License
Access	None: <u>Download</u> and <u>install</u> for free
OS	Available for Linux, Windows and MacOS
Repository	Available <u>on</u> Github
Documentation	Documentation OmNET++
	Documentation QuISP

QuNetSim

Simulator	QuNetSim
Properties	Simulator for quantum networks
	Provides framework for the development of protocols in quantum networks
	 Already contains quantum basic technologies such as quantum
	teleportation, QKD generation etc
	Uses the Python graphical networkx library to display and generate
	networks
	Event-controlled simulator
	Treats quantum networks like classical networks in terms of the layer model
Applications	• For example, suitable for tracking (step by step) a QuBIt teleportation in the
	Q-network
	 For trying out or creating network protocols at a "high level" level
	 Not suitable for accurate simulation of quantum effects
	Suitable for beginners in quantum networks
Language	Python
License	WITH License
Access	No restrictions: download and install for free
OS	Platform-independent: Python interpreter required
Repository	Available <u>on</u> GitHub
Documentation	Documentation <u>available</u> here

SeQUeNCe

Simulator	Sequence
Properties	 Used to analyze effects in quantum networks on the lower network layers,
	such as the caching of guantum states
Applications	 To test protocols, network parameters, and topologies
	To toot protocolo, network parametero, and topologico
Language	C++ Python Makefile
Language	
License	
LICCHSC	• Open Source <u>License</u>
Access	 No rostrictiono
ACCESS	• No restrictions
00	Distingues in des su de str. Di theore intermentant so mine d
05	Platform-independent: Python interpreter required
D	
Repository	Available_on_GitHub
Documentation	SeQUeNCe Documentation Page

SimulaQron

Simulator	SimulaQron
Properties	Simulator for application layer in quantum networks
	Developed by <u>QuTech</u>
	• Provides infrastructure of distributed Q processors connected via Q
	communication channels
	• Each Q processor is available via a server that runs on a normal PC (also
	distributed on different PCs); SimulaQron connects the processors to
	transmit Q-bits and entanglement over distances
	• The simulated hardware can then be accessed via Python, C libraries or
	the CQC interface
Applications	 Creation of own applications for the "quantum internet"
	Development of software engineering concepts and libraries for Quantum
	Internet
Language	Python
License	See <u>license file</u>
Access	No restrictions
OS	Platform-independent: Python interpreter required
Repository	Available <u>on</u> GitHub
Documentation	Installation
	SimulaQron <u>Documentation</u>

SQUANCH

Simulator	SQUANCH
Properties	developed for the simulation of quantum networks
	 was developed as part of the <u>INQNET</u> program
	contains classical and quantum error models
	• Protocols such as Quantum Error Correction included in examples (as
	source code)
Applications	For testing network protocols and quantum transmission
	Simulation of multiparty networks
Language	Python
License	WITH License
Access	No restrictions
OS	Platform-independent: Python interpreter required
Repository	Available_on_GitHub
Documentation	SQUANCH Documentation Page

QKD Simulators

QKDNetSim

Simulator	QKDNetSim
Properties	• It is a QKD simulation module that is embedded in the established NS-3
	simulator for networks
	Therefore, no complete quantum simulator
	Networks can be scanned on a QKD basis in overlay or TCP/IP mode
	 Based on the NS-3 Network Simulator (s. <u>here</u>)
	QKDNetSim can also <u>be used via a</u> web interface
Applications	Suitable for investigating the effects or behaviour in conventional networks
Language	C/C++, Python, Perl
License	GPL 2.0 License
Access	No restrictions
OS	Linux
Repository	Available <u>on</u> GitHub
Documentation	QKDNetSim <u>Documentation</u>

QKDSimulator

Simulator	QKDSimulator
Properties	Online simulator that can be used to analyze and simulate QKD protocols
	Parameters (number of QBits, fault tolerance etc) can be set via sliders
	• There are 4 simulator types to choose from: Complete QKD Stack, Sifting,
	Biased Error Estimation and Shannon Bound
	After simulation, results are summarized under their own tab
	Plots for the results are also available
Applications	Simulator for certain initial values for QKD
Language	Python Program
License	• N/A
Access	No restrictions
OS	Platform-independent: web browser required
Repository	no respository
Documentation	available on website

Quantum annealing

D-Wave Ocean

Simulator	D-Wave Ocean
Properties	 D-Wave Ocean is a software suite consisting of several independent packages
	• Each package is designed for an individual application: For example,
	dwave-hybrid is suitable for solving mathematical problems on hybrid
	(classical + based on quantum) architectures
Applications	Solving hard-to-calculate mathematical problems. Depending on the
	software package, the code can also be executed on quantum annealers
	from D-Wave
Language	Different programming languages. Depending on the respective D-Wave
	Ocean package. Most packages are in Python or C++
License	Apache 2.0 license or MIT license. Depending on the respective software
	package
Access	No restrictions
OS	Installation tested for Linux, Mac OS and Windows
Repository	Available <u>on</u> GitHub
Documentation	D-Wave Ocean Software Products Documentation Page

Other simulators

Other simulators can be found on the following URLs:

https://www.win-labor.dfn.de/quantentechnologien/quantensimulation/

https://quantiki.org/wiki/list-qc-simulators

https://github.com/qosf/awesome-quantum-software

https://qosf.org/project_list/